Телефон: 522-81-45

Geoinformatika 2014; 3(51) : 57-66 (in Ukrainian)

PROCESS OF LARGE SCALE FOLD FORMING IN THE CRUST SEDIMENTARY LAYER

M.V. Lubkov

Poltava Gravimetric Observatory within S.I. Subbotin Institute of Geophysics of NAS of Ukraine,
Myasoedova St, 27/29, Poltava 36029, Ukraine, e-mail: mikhail.lubkov@mail.ru

Based on the finite element method of three dimensional visco-elastic variation in the orthotropic foliated shells proximity, where shells are in quasi stationary loading process, the authors carried out, modeling of large scale fold forming processes in the crust sedimentary layer. The presented method allows us to calculate heterogeneities of the considered geological structures of both geometrical and rheological character. As a result, it is found, that fold velocities growth and fold forms forming depend on sedimentary rocks fracturing degree and on the deviation of the constringent geotectonic forces from horizontal direction, as well as on forms and sizes of the sedimentary rocks contortion areas. Consequently, sedimentary rocks fracturing degree leads to decreasing of the folds growth velocities. Deviation of the constringent geotectonic forces from horizontal direction also leads to their decreasing. Anticlinoriums and synclinoriums forming processes, and also velocities of these processes greatly depend on forms and sizes of the sedimentary rocks contortion areas. Moreover, anticlinoriums forming process is typical for contortion areas of big sizes. As the contortion area size decreases in the direction of compressing forces to some characteristic value, anticlinorium growth velocity decreases to zero, and qualitative transition to synclinoriums forming process takes place. Besides, as the respective contortion area size decreases, synclinorium growth velocity increases from zero to some maximum value, and then decreases to zero. In the case of anticlinoriums forming, sedimentary contortion area sizes in transversal direction relatively to geotectonic forces action do not effectively influence the process velocity. But In the case of synclinoriums forming, sedimentary contortion area size shortening leads to decreasing of the process velocity. The obtained information can be used for orogeny processes explorations as well as large geostructures forming and changing processes.

Keywords: computer modeling, variation finite element method, three dimensional visco-elastic model, fold forming processes, crust sedimentary layer.

pdf

References:

  1. Volarovich M.P. Spravochnik po fizicheskim svoystvam mineralov i gornykh porod pri vysokikh termodinamicheskikh parametrakh [Handbook on physical properties of minerals and rocks at high thermodynamic parameters]. Moscow, Nedra, 1978, 237 p.
  2. Gzovskiy M.V. Osnovy tektonofiziki [Base of tectonophysics]. Moscow, Nauka, 1975, 536 p.
  3. Grigor’ev A.S., Volovich I.M., Mikhaylova A.V. Voprosy interpretatsii sovremennykh dvizheniy zemnoy poverkhnosti, obuslovlennykh dvizheniyami fundamenta osadochnogo chekhla [Interpretation questions of the modern earth surface movements, due to sedimentary layer fundament movements]. Trudy “Sovremennye dvizheniya zemnoy kory. Morfostruktury, razlomy, seysmichnost’ [Proc. “Recent crust movements. Morphostructures, faults, seismicity”]. Moscow, Nauka, 1987, pp.9-16.
  4. Dortman N.B. Fizicheskie svoystva gornykh porod i poleznykh iskopaemykh (petrofizika): Spravochnik geofizika [Physical properties of rocks and useful fossils (petrophysics): Handbook of geophysics]. Moscow, Nedra, 1976, 527 p.
  5. Karnaukhov V.G., Kirichok I.F. Svyazannye zadachi teorii vyazkouprugikh plastin i obolochek [Connected problems of the visco-elastic plates and shells]. Kyiv, Naukova dumka, 1986, 221p.
  6. Kozlov V.I., Lubkov M.V. Kolebaniya mnogosloynykh ortotropnykh obolochek vrashcheniya s konechnoy sdvigovoy zhestkost’yu [Oscillations of the foliated orthotropic shells of revolution with calculating of shift rigidity]. Trudy 15 nauchnoj konferencii molodyh uchjonyh Instituta mehaniki Akademii Nauk Ukrainskoj SSR [Proc. of 15 sci. conf. of young scientists of Inst. of mechanics AS USSR]. Kyiv, 1990, pt. 2, Dep. in VINITI 26. 10. 90, no. 3802-B 90, pp. 439-445.
  7. Kristensen R. Vvedenie v teoriyu vyazkouprugosti [Introduction to theory of visco-elasticity]. Moscow, Mir, 1974, 338 p.
  8. Kukal Z. Skorost’ geologicheskikh protsessov [Velocities of geological processes]. Moscow, Mir, 1987, 245 p.
  9. Lubkov M.V. Pro vplyv suchasnykh rozlomno-blokovykh rukhiv Dniprovs’ko-Donets’koyi zapadyny na hravitatsiyne pole [About influence of modern fault block movements of Dnepr Donetsk depression on gravity field]. Trudy “Teoretychni ta prykladni aspekty heoinformatyky” [Proc. “Theoretical and practical aspects of geoinformatics”]. Kyiv, 2012, issue 9, pp. 117-126.
  10. Lyakhovskiy V.A., Myasnikov V.P. Povedenie vyazkouprugoy sredy s mikronarusheniyami pri rastyazhenii i sdvige [Behavior of visco-elastic environment with micro violations at stretching and shifting]. Izv. AN SSSR, Ser. Fizika Zemli [Proc. of AS  USSR, Ser. Physics of the Earth]. 1985, vol. 4, pp. 28-35.
  11. Morits G., Myuller A. Vrashchenie Zemli: teoriya i nablyudeniya [Rotation of the earth: theory and observations]. Kyiv, Naukova dumka, 1992, 512 p.
  12. Obraztsov I.F., Savel’ev L.M., Khazanov Kh.S. Metod konechnykh elementov v zadachakh stroitel’noy mekhaniki letatel’nykh apparatov [Finite element method in the building mechanics of flying devices problems]. Moscow, High school, 1985, 329 p.
  13. Pelekh B.L. Teoriya obolochek s konechnoy sdvigovoy zhestkost’yu [Theory of shells with finite shift rigidity]. Kyiv, Naukova dumka, 1973, 248 p.
  14. Spirtus V.B., Savchuk E.V. Osobennosti kripa i khrupkogo razrusheniya pri sdvigovoy deformatsii vyazkouprugoy povrezhdennoy sredy [Creep and brittle destruction characteristics at the shift deformation of visco-elastic defective environment]. Geofizicheskij zhurnal [Geophysical Journal], 2006, vol. 28, no. 2, pp. 123-129.
  15. Terkot D., Shubert D. Geodinamika. Geologicheskie prilozheniya fiziki sploshnykh sred [Geodynamics. Geological supplements of continuum physics]. Moscow, Mir, 1985, 730 p.
  16. Khain V.E., Lomize M.G. Geotektonika s osnovami geodinamiki [Geotectonics with bases of geodynamics]. Moscow, Knizhnyj dom universitet, 2005. – 560 p.
  17. Ez V.V. Skladkoobrazovanie v zemnoy kore [Fold forming in the earth crust]. Moscow, Nedra, 1985, 240 p.
  18. Currie J.B., Patnode H.W., Trump R.P. Development of folds in sedimentary strata. Geol. Soc. Amer. Bull., 1962, vol. 73, no.6, pp. 655-673.
  19. Gerbault M., Burov E.B., Poliakov A.N., Daignieres M. Do faults trigger folding of the lithosphere? Geophys. Res. Letters, 1999, vol. 26, no. 2, pp. 271-274.
  20. Ghosh S.K., Khan D., Sengupta S. Interfering folds in constructional deformation. Journal of Structural Geology, 1995, vol.17, no. 10, pp. 1361-1373.
  21. Muhehaus H.B., Dufour F., Moresi L., Hobbs B. A director theory for visco-elastic folding instabilities in multilayered rock. Inter journal of solids and structures, 2002, vol. 39, no.13-14, pp. 3675-3691.
  22. Schmid D.W., Dabrowski M., Krotkiewski M. Evolution of large am plitude 3D fold patterns: A FEM study. Physics of the Earth and Planetary Interiors, 2008, vol. 171, pp. 400-408.
  23. Shmalholz S.M., Podladchikov Y. Buckling versus folding: importance of viscoelasticity. Geophys. Res. Letters, 1995, vol. 26, no. 17, pp. 2641-2644.