Телефон: 522-81-45

Geoinformatika 2015; 1(53) : 5-26 (in Russian)

OPERATIVE ASSESSMENT OF HYDROCARBON RESOURCES WITHIN THE PROSPECTING AREAS AND SEPARATE STRUCTURES IN OFFSHORE BY FREQUENCY-RESONANCE METHOD OF REMOTE SENSING DATA PROCESSING AND INTERPRETATION

S.P. Levashov1,2, N.A. Yakymchuk1,2, I.N. Korchagin3, D.N. Bozhezha2

1Institute of Applied Problems of Ecology, Geophysics and Geochemistry, 1 Laboratorny lane, Kyiv 01133, Ukraine
2Management and Marketing Center of Institute of Geological Science NAS Ukraine, 1 Laboratorny lane, Kyiv 01133, Ukraine
3Institute of Geophysics of Ukraine National Academy of Science, 32 Palladin Ave., Kiev 03680, Ukraine, e-mail: korchagin@karbon.com.ua

Purpose. The purpose of the paper is to study the possibility of a mobile method of remote sensing data frequency-resonance processing used for operative assessment of the petroleum potential of individual structures and objects in the area of drilled and projected wells within offshore. To conduct experimental studies on the shelf of the Kara, Black and Azov seas, on the southern shelf of the South African Republic and south-eastern shelf of the Falkland Islands.
Design/methodology/approach. Experiments were carried out with using the mobile technology of frequency-resonance processing, and interpretation of remote sensing data, which is the direct method of oil and gas exploration and operates within the “substantial” paradigm of geophysical investigations. The technologies and methods developed on the principles of this paradigm are aimed at searching a particular (desired in each case) substance – oil, gas, condensate, gold, zinc, uranium, etc.
Findings. Four anomalous zones of the “oil + gas + condensate” type and two anomalous zones of the “oil + gas” type were discovered and mapped within the surveyed area in the Kara Sea. The estimates of maximum values of fluid pressures in reservoir vary from 19,1 to 29,4 MPa within the detected anomalies. The total area of all the anomalies equals 510 km2; with regard to the surveyed area this is 12,29 %. Within the local area in Tuapse Trough in the Black Sea four anomalies of the “gas” type and one anomaly of the “gas + condensate” type were revealed. There are anomalous zones significantly small than the structures identified by geophysical research.
The results of the studies in the Azov Sea showed that the well “Belosarayskaya-1” (1400 m depth) drilled within the structure of the same name does not explicitly resolve the question about the prospects of commercial hydrocarbons accumulations found within it, as it opened only the sediments of the cross-section. Vertical scanning of the cross-section near the well confirmed the possibility of hydrocarbon deposits detection in the fractured part of the basement. Within the tested block in the area of the F-O gas field on the South Africa offshore, 13 anomalous zones of the “gas” type of varying size and intensity were discovered and mapped. Parameters of many anomalous zones (areas and maximum estimates of fluid pressure in the reservoirs) allow us to classify them as promising objects the probability of industrial (commercial) gas inflows from which is relatively high. The observed anomalies should be considered as priority local areas for detailed study with geophysical methods and drilling.  In fact, they can be considered as “Sweet spots” zones in tight sandstones. Based on the results of remote sensing data processing in the area of the Darwin well drilled in the Falkland Islands offshore, the maximum values of reservoir pressure were estimated at 21 MPa. At the resonance frequencies of gas at higher pressures anomalous effects did not appear. This means that from the established Darwin well collector at the depths of 4633–4681 m the likelihood of commercial hydrocarbons inflows is very low.
Practical value/implications. Discovered anomalous zones are, in fact, the projections into surface of hydrocarbon accumulations contours in the cross-section. This additional information can be used for the approximate assessments of hydrocarbon resources within the surveyed areas and structures. The development of the surveyed license blocks starting from detected anomalous zones will generally make it possible to significantly accelerate and optimize the prospecting process. Mobile technology of frequency-resonance processing and interpretation (decoding) of remote sensing data can be used for operative assessment of the petroleum potential of individual structures and prospecting areas in marine and ocean waters, the difficult to access and remote Arctic and Antarctic regions included.
Keywords: mobile technology, anomaly of deposit type, oil, gas, gas-condensate, shelf, Arctic, fault zone, satellite data, direct prospecting, processing of remote sensing data, interpretation.

The full text of papers

References

  1. Arkticheskie morja Rossii [Russian Arctic seas]. Available at: http://www.rosneft.ru/Upstream/Exploration/arctic_seas/ (accessed 10 December 2014).
  2. Bagdasarova M.V. Degazacija Zemli – global’nyj process, formirujushhij fljuidogennye poleznye iskopaemye (v tom chisle mestorozhdenija nefti i gaza) [Degassing of the Earth – a global process of fluidogene minerals forming (oil and gas including)]. 3-e Kudrjavcevskie Chtenija. Materialy Vserossijskoj konferencii po glubinnomu genezisu nefti. Moscow, CGJe, 2014 [3nd  Kudryavtsevkiye Reading. All-Russian Conference on the genesis of deep oil. Moscow, CGE, 2014], 22 p. Available at:  URL: http://conference.deepoil.ru/images/stories/docs/3KR/3KR_Theses/Bagdasarova_Theses.pdf (accessed 10 December 2014).
  3. Bembel R.M., Megerya V.M., Bembel S.R. Geosolitony: funktsional’naya sistema Zemli, kontseptsiya razvedki i razrabotki mestorozhdeniy uglevodorodov [Geosolitony: functional system of the Earth, the concept of exploration and exploitation of hydrocarbons]. Tyumen’: Vektor Buk, 2003, 344 p.
  4. Valyaev B.M. Priroda i osobennosti prostranstvennogo rasprostranenija netradicionnyh resursov uglevodorodov i ih skoplenij [Nature and characteristics of the spatial distribution of unconventional hydrocarbon resources and their accumulations]. Gazovaja promyshlennost’, Netradicionnye resursy nefti i gaza – prilozhenie k zhurnalu [Gas industry, Unconventional oil and gas resources – supplement to the journal], 2012, pp. 9-16.
  5. Gluhmanchuk E.D., Krupizkyi V.V., Leontyevskyi A.V. Treshhinno-blokovaja struktura mestorozhdenij kak osnovnaja prichina nizkoj jeffektivnosti geologo-gidrodinamicheskih modelej [Fracture-block structure of deposits as the main reason of low  efficiency of geological and hydrodynamic models]. Nedropol’zovanie XXI vek, 2014, no. 3, pp. 64-67.
  6. Esipovich S.M., Semenova S.G., Semenets O.I. K ocenke perspektiv neftegazonosnosti nekotoryh uchastkov Azovskogo morja [Estimation of petroleum potential of some areas of the Azov Sea]. Geology and Mineral Resources of World Ocean, 2010, no. 3, pp. 20-27.
  7. Karpov V.A. Sostojanie i perspektivy razvitija neftegazopoiskovyh rabot v Zapadnoj Sibiri [Status and prospects of oil and gas exploration in Western Siberia]. Geologija nefti i gaza, 2012, no. 3, pp. 2-6.
  8. Kovalev N.I., Gokh V.A., Ivashchenko P.N., Soldatova S.V. Opyt prakticheskogo ispol’zovaniya apparatury kompleksa “Poisk” dlya obnaruzheniya i okonturivaniya uglevodorodnykh mestorozhdeniy [Experience in the practical use of the “Poisk” equipment complex to detect and delineate hydrocarbon deposits]. Geoinformatika (Ukraine), 2010, no. 4, pp. 46-51.
  9. Kusov B.R. Genezis nekotorykh uglerodsoderzhashchikh poleznykh iskopaemykh (Ot metana do almaza): Monografiya. Izdanie vtoroe, dopolnennoe [Genesis some carbonaceous minerals (From methane to diamond): Monograph. Second edition, expanded]. Vladikavkaz: IPO SOIGSI, 2011, 195 p.
  10. Levashov S.P., Yakymchuk N.A., Korchagin I.N. Novye vozmozhnosti operativnoj ocenki perspektiv neftegazonosnosti razvedochnyh ploshhadej, trudnodostupnyh i udalennyh territorij, licenzionnyh blokov [New opportunities for rapid assessment of the hydrocarbon potential of exploration areas, difficult of access and remote areas, and license blocks]. Geoinformatika (Ukraine), 2010, no. 3, pp. 22-43.
  11. Levashov S.P., Yakymchuk N.A., Korchagin I.N. Ocenka otnositel’nyh znachenij plastovogo davlenija fljuidov v kollektorah: rezul’taty provedennyh jeksperimentov i perspektivy prakticheskogo primenenija [Evaluation of the relative values of fluid pressure in the reservoir: results of experiments and practical perspective]. Geoinformatika (Ukraine), 2011, no. 2, pp. 19-35.
  12. Levashov S.P., Yakymchuk N.A., Korchagin I.N. Chastotno-rezonansnyj princip, mobil’naja geojelektricheskaja tehnologija: novaja paradigma geofizicheskih issledovanij [Frequency-resonance principle, mobile geoelectric technology: a new paradigm of Geophysical Research]. Geophysical Journal, 2012, v. 34, no. 4, pp. 167-176.
  13. Levashov S.P., Yakymchuk N.A., Korchagin I.N., Bozhezha D.N. Mobil’nye geofizicheskie tehnologii: jeksperimental’noe izuchenie vozmozhnosti primenenija dlja poiskov skoplenij uglevodorodov v rajonah rasprostranenija slancev v Vostochnoj Evrope [Mobile geophysical technologies: experimental study of possibility of application for hydrocarbon accumulations prospecting within areas of shale spreading in eastern Europe]. Geoinformatika (Ukraine), 2014, no. 4, pp. 5-29.
  14. Popkov V.I., Popkov I.V., Dementieva I.N. Novyj regional’nyj neftegazoperspektivnyj ob’ekt Skifskoj plity [The new regional oil and gas facility of Scythian plate]. Geology, geography and global energy, 2011, no. 2(41), pp. 111-114.
  15. Raczynskiy M.Z. Juzhno-Kaspijskij bassejn: geologicheskie aspekty perspektiv, ocenka uglevodorodnogo potenciala strategija poiskov mestorozhdenij nefti i gaza [South Caspian Basin: Geological Aspects of perspectives, assessment of the hydrocarbon potential and the strategy of oil and gas search] Geophysics of XXI century: 2007 [Proceedings of the Ninth Geophysical readings named after V.V. Fedynskiy (March 1-3, 2007, Moscow)]. Tver, Publishing GERS, 2008, pp. 282-304.
  16. Rosneft’ otkryla novoe mestorozhdenie v Karskom more [Rosneft has opened a new field in the Kara Sea]. Available at: http://www.rogtecmagazine.com/ru-blog/exxonmobil/ (accessed 12 December 2014).
  17. Rostovtsev V.V., Laynveber V.V., Rostovtsev V.N. K bol’shoj nefti Rossii [To large Russian oil]. Geomatika [Geomatics], 2011, no. 1, pp. 60-62.
  18. Rusakov O.M., Kutas R.I. Fata-morgana biogennoj doktriny uglevodorodov v Chernom more [Fata Morgana of biogenic hydrocarbons doctrine in the Black Sea]. Geophysical Journal, 2014, v. 36, no. 2, pp. 3-17.
  19. Timurziyev A.I. Mantijnye ochagi generacii uglevodorodov: geologo-fizicheskie priznaki i prognozno-poiskovye kriterii kartirovanija; zakonomernosti neftegazonosnosti nedr kak otrazhenie razgruzki v zemnoj kore mantijnyh UV-sistem [Mantle pockets of hydrocarbon generation: geological and physical characteristics and prognostic search criteria mapping; patterns of subsurface oil and gas potential as a reflection of unloading in the crust of mantle hydrocarbon systems]. 2-e Kudrjavcevskie Chtenija. Materialy Vserossijskoj konferencii po glubinnomu genezisu nefti. Moscow, CGJe, 2013 [2nd Kudryavtsevkiye Reading. All-Russian Conference on the genesis of deep oil. Moscow, CGE, 2013], pp. 333-379.
  20. Shuman V.N., Levashov S.P., Yakymchuk N.A., Korchagin I.N. Radiovolnovye zondiruyushchie sistemy: elementy teorii, sostoyanie i perspektiva [Radio Wave Sounding Systems: Theoretical Postulates, State, Prospect]. Geoinformatika (Ukraine), 2008, no. 2, pp. 22-50.
  21. Gabrielsen P.T., Abrahamson P., Panzner M., Fanavoll S. and Ellingsrud S. Exploring frontier areas using 2D seismic and 3D CSEM data, as exemplified by multi-client data over the Skrugard and Havis discoveries in the Barents Sea. First Break, 2013, vol. 31, issue 1, p. 63-71.
  22. Fanavoll S., Gabrielsen P.T. and Ellingsrud S. The impact of CSEM on exploration decisions and seismic: two case studies from the Barents Sea. First Break, 2014, vol. 32, issue 11, p. 105-110.
  23. Hodgson Neil, Intawong A. Derisking deep-water Namibia. First Break, 2013, vol. 31, issue 12, p. 91-96.
  24. Mode of access, 2014, https://africaenviro.worleyparsons.com/PetroSA%20Hydraulic%20Fracturing%20EIA/Forms/AllItems.aspx (accessed 15 December 2014).
  25. Levashov S.P., Yakymchuk M.A., Korchagin I.N.,  Bakhmutov V.G.,  Soloviev V.D. and  Bozhezha D.N. The Falkland Basins – New Structural Model and Hydrocarbon Bearing Prospects (by Remote Sensing and Geoelectric Data). 76nd EAGEConference and Technical Exhibition incorporating SPE EUROPEC 2014. Amsterdam, 16-19 June 2014, 5 p., DOI: 10.3997/2214-4609.20140908. http://www.earthdoc.org/publication/publicationdetails/?publication=75780 (accessed 15 December 2014).
  26. Levashov S.P., Yakymchuk N.A., Korchagin I.N., Bozhezha D.N. Frequency-resonance method of remote sensing data processing: approbation on hydrocarbon field of Barents Sea offshore. 76nd EAGE Conference and Technical Exhibition incorporating SPE EUROPEC 2014. Amsterdam, 16-19 June 2014, 5 p., DOI: 10.3997/2214-4609.20141265. http://www.earthdoc.org/publication/publicationdetails/?publication=76136 (accessed 15 December 2014).
  27. Mudaly Kathleen, Turner Jim R., Escorcia Florangel, and Higgs Roger. F-O Gas Field, Offshore South Africa – From Integrated Approach to Field Development. Mode of access, 2009, Search and Discovery Article #20070 (2009) (accessed 15 December 2014).
  28. Norway looks forward to continuing offshore fortunes. First Break, 2013 vol. 31, issue 2, p. 26.
  29. Poor exploration results could blight UK’s offshore progress, Wood Mackenzie report suggests. First Break, 2013 vol. 31, issue 2, p. 28.
  30. Wrigley R., Intawong A and Rodriguez K. Ireland Atlantic Margin: a new era in a frontier basin. First Break, 2014, vol. 32, issue 12, p. 95-100.

//