Телефон: 522-81-45

Geoinformatika 2019; 1(69) : 70-90

УДК 551:681.3(477.5)

FORMATION ALGORITHMS OF INFORMATION SUPPORT FOR R&D ON GEOLOGICAL MEDIUM MENAGEMENT

D.P. Khushchov1, E.A. Remezova1, R.Ya. Belevtsev2, E.A. Yakovlev3, A.T. Azimov4, A.V. Ivanova1, A.P. Lobasov5, L.P. Bosevska6, R.Kh. Greku1, T.V. Okholina1.

1 Institute of Geological Sciences NAS of Ukraine, O. Gonchara st., 55 b, Kiev, Ukraine, 01054, e-mail: khrushchov@ hotmail.com
2State Institution «Institute of Environmental Geochemistry of the National Academy of Sciences of Ukraine», Acad. Palladina av, 34, Kiev, Ukraine, 03142.
3Institute of Telecommunications and Global Information Space of the National Academy of Sciences of Ukraine, Chokolovsky Boulevard, 13, Kiev, Ukraine, 03186.
4State Institution «Scientific Center for Aerospace Earth Research of the Institute of Geological Sciences, NAS of Ukraine» O. Gonchara st., 55 b, Kiev, Ukraine, 01054.
5Free geologist.
6 Ukrainian Research Institute of the Salt Industry «UkrNIISol» Chkalov ul, 1a, Soledar, Bakhmut district, Donetsk region, Ukraine, 84545.

Purpose. The theoretical scheme of information support for R&D on geological medium management (ISRDGMM) based upon formation approach is presented.
Metodology. The methodological approach of the concept formulation is based upon the  analysis and generalization of theoretic schemes for a number of human geological activity areas. A basis of these schemes and R&D connected with is represented by formation analysis as so as geological formations  pose  a matrix of the Earth crust, possessing certain properties (structure, material composition), defining their functional properties, which in their turn control all the processes, taking place in it. Hence, the theory of  ISRDGMM has to be based upon foundation of geological medium formational algorithms.
Findings. The theoretical aspect of the concept consists in revelation of formation algorithms for all the cycle of ISRDGMM actions, comprising three cognitive–functional levels: general methodological basis, target oriented methodological – methodic elaboration and methodic ISRDGMM complex. Authors consider this scheme as universal one, controlling all the areas of mankind geological activity.
Practical significance. The practical significance of this scheme is expressed by third level, comprising two methodic apparatus: prognostic reconstructive retrospective-static modeling and complex ecological-geological model. The effectiveness of these apparatus is confirmed by generalized analysis of numerous areas of the mankind geological activity, as well author’s experience in many branches of geological medium management.

Keywords: geoinformatics, geological medium, geological medium use, geological environment protection, Information support of geological R&D.

 

The full text of papers

 

References

  1. Azimov O. Methodology of research into the Earth’s crust structure via remote sensing technologies. Visnyk Taras Shevchenko National University of Kyiv. Geology. 1 (64). P. 73—77 [in Ukrainian].
  2. Azimov O.T. Modular flowchart of transformation, decoding and geological interpretation of remote aerospace survey data. Geoinformatika. N 2 (50). P. 43—55 [in Ukrainian].
  3. Auzin A.A., Glaznev V.V. Komp’yuternoe trekhmernoe modelirovanie geologicheskikh ob’ektov i protsessov. Teoretychni ta prykladni aspekty heoinformatyky: zb. nauk. prats. Kyiv, 2004. T. 1. S. 50—60 [in Russian].
  4. Bahrii I.D. Fundamentalni rozrobky pidgruntia novykh vysokoefektyvnykh tekhnolohiy. Kyiv: Foliant, 2017. 562 s. [in Ukrainian].
  5. Berlyant A.M., Koshkarev A.V., Tikunov V.S. Kartografiya, geoinformatika: itogi nauki i tekhniki. Seriya kartografiya. M., VINITI, 1991, T. 14. 179 s. 5 [in Russian].
  6. Biletskyi V., Serhieiev P., Fyk M., Kozyrets S. Modeling in the oil and gas industry. Geoinformatyka. N 1. P. 86—98 [in Ukrainian].
  7. Busygin B.S., Nikulin S.L. Specialized geoinformation rapid system: features, structure, tasks. Geoinformatyka. N 1(57). P. 22—34 [in Russian]. Available at: http://nbuv.gov.ua/UJRN/geoinf_2016_1_4.
  8. Goncharov V.E. Geologicheskaya informatika. Polozhenie v sisteme nauk pro Zemlyu. Geoinformatyka. N 3. P. 19—24 [in Russian].
  9. Goncharov V.E. Infogeologiya — ob’ekt i metody issledovaniy. 2011. N 2. P. 5—12. Available at: Rezhim dostupa: [http://www.geology.com.ua/wp-content/uploads/2014/09/01_Goncharov.pdf] [in Russian].
  10. Honcharov V.E., Kononenko L.P., Kalenska H.L. Rozrobka pryntsypiv zobrazhennia stratehichnoi informatsii v infor- matsiino-geologichnykh doslidzhenniakh. 2008. N 3. P. 56—68 [in Ukrainian].
  11. Honcharov V.E. Geologichnyi napriam rozvytku informatsiinykh tekhnolohiy. Geoinformatyka, N 2. P. 21—27 [in Ukrainian].
  12. Hrebennikov S.Ye., Lobasov O.P. Modeliuvannia budovy osadovykh baseiniv u seredovyshchi ArcVew. Mineralni resursy Ukrainy. N 4. P. 25-31.
  13. Dem’yanov V.V., Savel’eva E.A. Geostatistika: teoriya i praktika. Moscow: Nauka, 2010. 327 s. [in Russian].
  14. Derzhavni budivelni normy Ukrainy. Sklad i zmist materialiv otsinky vplyvu na navkolyshnie seredovyshche (OVNS) pry proektuvanni i budivnytstvi pidpryiemstv, budynkiv, sporud. DBN. A.2.12-1-2003. Derzhavnyi komitet Ukrainy z budivnytstva ta arkhitektury. Kyiv, 2004. 22 s. [in Ukrainian].
  15. Diialnist’ Natsionalnoi akademii nauk Ukrainy u 2009—2015 rokakh. Osnovni rezultaty ta pokaznyky. Kyiv: NAN Ukrainy, 2015. 178 s. [in Ukrainian].
  16. Dolynskyi I.P. Aprobatsiia prohram 3D rehionalnoho modeliuvannia na prykladi obiektiv DDZ. 2014. N 4 (52). P. 37—46. Available at: http://www.geology.com.ua/wp-content/uploads/2016/07/3_4_2014.pdf
  17. Edinaya raspredelennaya komp’yuternaya model’ geologicheskogo stroeniya territorii Rossii. Moscow: Geos, 2001. 192 s. [in Russian].
  18. Zgurovskiy M.Z., Pankrat’ev N.D. Sistemnyy analiz. Problemy metodologiya, prilozheniya. Kiev: Naukova dumka, 2005. 743 s. [in Russian].
  19. Izosov L.A. Formatsionnyy analiz i ego mesto v geologicheskoy nauke. Regional’nyeproblemy. T. 14, N 2. P. 21—27.
  20. Instruktsiya o provedenii geologorazvedochnykh rabot po stadiyam (tverdye poleznye iskopaemye). Utv. prikazom Ministerstva energetiki i prirodnykh resursov Respubliki Kazakhstan 27.02.2006 goda, N 72. 12 p. [in Russian].
  21. Ispol’zovanie geoinformatsionnoy sistemy K-MINE v razlichnykh sferakh deyatel’nosti. II Mezhdunarodnogo nauchno- prakticheskogo seminara «SVIT GIS-2012»: sbornik dokladov. Krivoy Rog: Dionis, 2012. 298 s. [in Russian].
  22. Istratov I.V. Geometrizatsiya geologicheskikh tel. Moscow: Nedra, 1996. 112 p. [in Russian].
  23. Karagodin Yu.N. Regional’naya stratigrafiya. Moscow: Nedra, 1985. 180 s. [in Russian].
  24. Kulinkovych A.Ye., Yakymchuk M.A. Geoinformatyka: istoriia stanovlennia, predmet, metod, zadachi (suchasna tochka zoru). Geoinformatyka. N 3. P. 5—25 [in Russian].
  25. Kostrykov S.V. Dosvid HIS — modeliuvannia i vizualizatsii system sverdlovyn ta geologichnoho seredovyshcha (na prykladi Hremiachynskoho rodovyshcha kaliinoi soli). Geoinformatyka. N 2. P. 64—70 [in Ukrainian].
  26. Laverov N.P., Gozhik P.F., Khrushchev D.P i dr. Tsifrovoe strukturno-litologicheskoe modelirovanie mestorozhdeniy tyazhelykh mineralov. Kiev; Moskva: Interservis, 2014. 242 p. [in Russian].
  27. Metodychni rekomendatsii z provedennia monitorynhu ta naukovoho suprovodu nadrokorystuvannia. Kyiv: Derzhkomnadra, 2012. 12 p. [in Ukrainian].
  28. Rudko H.I., Nazarenko V.M., Nazarenko M.V., Khomenko S.A. Avtomatyzovani systemy ekspertnoi otsinky ta tekhniko- ekonomichnoho obgruntuvannia kondytsii zapasiv korysnykh kopalyn. Geoinformatyka. N 2. P. 86—89 [in Ukrainian].
  29. Rudko H.I., Netskyi O.V., Nazarenko M.V., Geoinformatsiini tekhnologii pry geologo-ekonomichnomu otsiniuvanni rodovyshch korysnykh kopalyn (na prykladi HIS K-Mine). Geoinformatyka. N 3 (67). P. 14—24 [in Ukrainian].
  30. Sergeev E.M. Inzhenernaya geologiya — nauka ob okruzhayushchey brede. Inzhnernaya geologiya. N 1. P. 1—9 [in Russian].
  31. Stehenko D.M., Chmyr O.S. Metodolohiia naukovoho doslidzhennia. Pidruchnyk, 2e vydannia pereroblene i dopovnene. Kyiv: Znannia, 2007. 317 s. [in Ukrainian].
  32. Stroitel’nye normy i pravila. SNiP P. 94—80. Podzemnye gornye vyrabotki. Moscow: Gosstroy SSSR, 1980. 35 p. [in Russian].
  33. Khakymov E.M., Karohodin Yu.M., Mukhametshyn R.Z. Problems of classification of stratigraphy objects of stand-by tanks. systematic hierarchical approach Geoinformatyka. N 2 (54). P. 27—32 [in Ukrainian] Rezhim dostupa: http:// www.geology.com.ua/wp-content/uploads/2015/07/5_Hakimov_2_2015.pdf
  34. Khrushchov D.P., Koval’chuk M.S., Remezova E.A. i dr. Strukturno-litologicheskoe modelirovanie osadochnikh formatsiy. Kiev: Interservis, 2017. 352 p. [in Russian].
  35. Khrushchev D.P., Lyal’ko V.I., Kharitonov O.M. i dr. Izolyatsiya radioaktivnykh otkhodov v geologicheskikh formatsiyakh. Kiev, 1993. 60 p. (Prepr. NAN Ukrainy. In-t geol.. nauk; 93-3). [in Russian].
  36. Cherevko I.A. Khrushchov D.P. Lysenko A.N. Printsipy geologicheskogo obosnovaniya vybora uchastkov dlya stroitel’stva pripoverkhnostnykh khranilishch toksichnykh otkhodov. Geologicheskiy zhurnal. N 3—4. P. 48—56 [in Russian].
  37. Shestopalov V.M., Lukin A.E., Zgonnik V.A. Ocherki degazatsii Zemli. Kiev: Nauchno-inzhenernyy tsentr radiogidrogeo- logicheskikh poligonnykh issledovaniy NAN Ukrainy. Institut geologicheskikh nauk NAN Ukrainy, 2018. 632 p. [in Russian].
  38. Jakovljev Je.O. Krytychni zminy ekologhichnogho stanu nadr Donbasu. Mineraljni resursy Ukrajiny. 2017, N 3.P. 34—40 [in Ukrainian].
  39. Bledinger W., Brack P., Norborg A.K., Pedersen E.W. Three-dimensional modelling of an isolated carbonate buildup (Triassic, Dolomites, Italy). Sedimentology. Vol. 51. P. 297—314.
  40. Mc-Cammon R.B. The Mu PROSPECTOR mineral consultant system; U.S. geological Survey Bulletin, 1697. 1986. 35 p.
  41. Candill M. Using neural nets — fuzzy decisions. Part. 2. I. Expert. 1990. Vol. 5, N 4. P. 59—64.
  42. Duda R.O. AI and decision making — the PROSPECTOR system for mineral exploration. Final report. SRI Project 8172. Menlo Park, Calif.: Artificial Intellegence Center, SPRI International, 1980. 120 p.
  43. Geological Challenges in Radioactive Waste Isolation. Third Worldwide Review ed.; eds P.A. Witherspoon, G.S. Bodvars- son. University of California, Berkeley Lab. Dec., 2001. 335 p.
  44. Hflgguist E. The economic value and use of geological information. Doctoral thesis. Lulee University of Technology, 2017. P. 34.
  45. Khruschov D.P., Tabachny L. Deep Geological Disposal of Radioactive Waste in Ukraine. In: Geological Challenges in Radioactive Waste Isolation. Third Worldwide ed.; P.A. Witherspoon, G.S. Bodvarsson. University of California, Berkeley Lab. Dec., 2001. P. 283—290.
  46. Kostic B., Suss P., Aigner T. Three-dimentional sedimentary architecture of Quaternary sand and gravel resources: a case study of economic sedimentology (SW Germany). Journal Earth Sci.(Geol. Rundsch). 2007. Vol. 96. P. 743—767.
  47. Martynenko A.I. Electronic Earth as a methodology and technology of our time. XXII FIG Intern. Congress. Washing- tone, 2002. P. 72—73.
  48. Object oriented expert systems and their applications to sedimentary basin analysis. US Geological Survey Bulletin 2048, By Betty M. Miller. Washington: US government printing office, 1993, 34 p.
  49. Scott M., Jones M. Management of Public Geoscience Data-International Mining for Development Centre. Perth: The University of Western Australia, 2017. 20 p.
  50. Tales Set in Stone — 40 years of the International GEOSCIENCE Programme (IGCP); ed. Edward Derbyshire. Published in 2012 by the Global Earth Observation Section of the United Nations Educational, Scientific and Cultural Organization. 7. Paris, France, 2012. 140 p.