Телефон: 522-81-45

Geoinformatika 2020; 1(73) : 72-81

УДК 550.837

MODIFICATIONS OF IMAGINARY VECTORS, THEIR PROPERTIES AND CAPABILITIES WHEN VISUALIZING A MAGNETOTELLURIC FIELD

T. I. Prychepiy

Institute of Geophysics, National Academy of Sciences of Ukraine, 03680 Kiev, 32 Palladina Ave. e-mail: sharapann@ukr.net

Purpose. Vector characteristics of the electromagnetic field are successfully used at the decision of a return problem of magnetotelluric researches. In the given article it is offered to add the list of vector parameters by new ones — the combined imaginary vectors which can expand opportunities of process of visualization magnetotelluric data.

Design/methodology/approach. To test the imaginary vector method, the calculated fields of three-dimensional models were used. The components of the MT fields of model objects were calculated using the Mackie R. L. program (1994). The field calculation methodology is based on the integral form of the Maxwell equation for finite-difference approximation of a second-order magnetic field. The model is placed against the background of the normal section, which is taken as a geoelectric section of the East European platform. In this paper, an immersed cube is selected as a test model. Two distribution options ρk are specified — a conductor in an insulator and a reverse version.

Findings. The paper presents the results of model studies of the properties of combined imaginary vectors in order to study the possibility of using these parameters to visualize magnetotelluric sounding data. The results of the calculation of combined imaginary vectors were considered in parallel with the calculation of the Wize vectors for the same models. The dependence of combined imaginary vectors on the geometric characteristics of polarization ellipses of the magnetic component of the MT field is established. The correlation of directions of combined imaginary vectors and Wiese vectors is shown.

The practical significance and conclusions. Testing results of new parameters — combined imaginary vectors normalized by the square of the module of the tangential component of the electric field strength — showed that these parameters can be successfully used to visualize the MTS and MVS data at the stage of qualitative interpretation, supplementing the results obtained by traditional methods.

Keywords: magnetotelluric studies, combined imaginary vectors, polarization ellipse, Wiese vector.

The full text of papers

References

  1. Abramova D. Yu., Abramova L.M., Filippov S.V. Ob issledovanii tektonosferyi s ispolzovaniem sputnikovyih dannyih. Sovremennyie problemyi distantsionnogo zondirovaniya Zemli iz kosmosa. 2013. T. 10, № 1. S. 167-182.
  2. Babak V. I., Klimovich T. A., Rokityanskiy I. I., Tereshin A. V. Variatsii vektora induktsii v Yaponii. Geofizicheskiy zhurnal. 2013. T. 35, № 1. S. 153-158.
  3. Berdichevskiy M. N., Dmitriev V. I. Modeli i metodyi magnitotelluriki. Moskva: Nauchni mir, 2009.
  4. Varentsov I. M., Kulikov V. A., Yakovlev A. G., Yakovlev D. V. Vozmozhnosti metodov magnitotelluriki v zadachah rudnoy geofiziki. Fizika Zemli. 2013. № 3. S. 9-29.
  5. Gorodyskiy Yu. M. MatematychnI spivvidnoshennya dlya vektoriv Vize vid pryamolinIynyh anomaliy elektroprovidnosti. GeodynamIka. 2000.T. 35, № 1. S.108-112.
  6. Gorodyskiy Yu. M., Kuznetsova V. P., Klimovich T. A. Deyaki osoblyvosti vektoriv Vize v Zakarpats’komu proguni ta ih interpretaciya. Geodynamika. 2000. Vol. 35, № 1. P. 112-117.
  7. Moroz Yu. F., Tatkov G. I., Moroz T. A., Tubanov C.A., Predein P.A. Izmeneniya geomagnitnogo polya i magnitnogo tip pera v Bajkalskoj riftovoj zone. Geofizicheskie issledovaniya. 2013. T. 14, № 3. S. 10-23.
  8. Semenov V. Yu. Problemy indukcionnyh zondirovanij mantii Zemli estestvennymi polyami. Geofizicheskij zhurnal. 2009. T. 31, № 4. S. 93-103.
  9. Prichepij T. I. Vektornoe tozhdestvo impedansnogo tipa i ellipsy polyarizacii garmonicheskogo elektromagnitnogo polya. Geofizicheskij zhurnal. 2007. T. 29, № 5. S.124-142.
  10. Shuman V.N. Magnitotelluricheskiy impedans: fundamentalnyie modeli i vozmozhnosti ih obobscheniya. Geofizicheskiy zhurnal. 2010. T. 32, № 3. S.18-28.
  11. Aboul-Atta O. A., Boerner W. M. Vectorial Impedance Identity for the Natural Dependence of Harmonic Fields on Closed Boundaries. Canadian. Phys. 1975. Vol. 53, № 15. P. 1404-1407.
  12. Mackie R. L., Smith J. T. and Madden T. R. Three dimensional electromagnetic modeling using finite difference equations: the magnetotelluric example. Radio Science. 1994. Vol. 29. P. 923-935.

 

Receive 25.02.2020