Телефон: 522-81-45

Geoinformatika 2016; 1(57) : 22-36 (in Russian)

SPECIALIZED GEOINFORMATION RAPID SYSTEM: FEATURES, STRUCTURE, TASKS

B.S. Busygin, S.L. Nikulin

State Higher Education Institution “National Mining University”, 29 Karl Marx Ave., Dnipropetrovsk 49005, Ukraine,
e-mail: busyginb@yandex.ru, s-nikulin@yandex.ru

Purpose. The purpose of the paper is to describe the functionality and structure of the geographic information system RAPID (created by GIS Department of the National Mining University) and GIS technology which the system implements. The system focuses on the integrated processing and analysis of terrestrial and space-based data, and allows us to solve a wide range of problems of nature and mineral resources management using common methodological principles. The system unites universal GIS tools with mathematical apparatus of Data Mining that enables us to integrate heterogeneous multi-level geospatial data and extract new information.
Design/methodology/approach. The developed system uses a variety of methods of mathematical statistics, image processing, lineament analysis, as well as specific methods of Data Mining – classification, pattern recognition, sequential analysis, association rules searching and others. It permits to extract new information from large volumes of heterogeneous data. The geoinformation technology based on the RAPID GIS implements the principle of multivariate problem solving with the help of simulation and computational experiments.  It is aimed at uncovering direct links between the spatial arrangement of the studied objects/phenomena and structure of the data describing them.
Findings. The developed system is a versatile tool of mineral deposits prediction, territories mapping, monitoring and forecasting of various geological and ecological situations, eds. The paper gives an example of the practical application of the RAPID technology for gold objects prediction within the Western Uzbekistan territory. The aim was to locate sites promising for new gold objects detection. Source data were presented as high-precision QuickBird-2 space images, geophysical fields and geological information. Some promising areas were detected by applying procedures of supervised classification, lineament analysis, and methods of geological structure complexity assessing. Their area is estimated to be 5,1 % of the total area of the investigated territory.
Practical value/implications. The RAPID GIS has been used successfully by a number of geological enterprises of Ukraine, Uzbekistan, Kazakhstan, and Russia. Experience has shown that its use can improve the effectiveness of integrated analysis of heterogeneous multi-level geospatial data to reduce time and costs, and provides experts and researchers with a powerful and flexible tool for investigating, in particular, tasks of ecology and mineral resources management. At the moment the system has no analogs in Ukraine and possesses a number of functions that such widely known products as Geosoft/Oasis montaj, ArcGIS, Erdas Imagine, ENVI, and eCognition are lacking.

Keywords: geographic information systems, the integrated data analysis, Data Mining, the forecast and searches of mineral deposits.

The full text of papers 

References:

  1. Bogatskiy V.V., Kolleganov Yu.M., SuganovB.I. Prostranstvenno-statisticheskiy analiz geologicheskogo stroeniya i razmeshcheniya poleznykh iskopaemykh. Moscow, Nedra, 1976, 103 p. (in Russian).
  2. Busygin B.S., Nikulin S.L., Zatsepin E.P., Sergeeva E.L. Geoinformatsionnaya podsistema “Segment” kak sredstvo analiza dannykh distantsionnogo zondirovaniya Zemli. Geoinformatika, 2008, no 2, pp. 51-57 (in Russian).
  3. BusyginB.S., Nikulin S.L., Boyko V.A. Geoinformatsionnaya sistema RAPID kak sredstvo monitoringa i prognozirovaniya chrezvychaynykh situatsiy. Zbіrka naukovykh prats’ SNUYaEtaP. Sevastopol’, SNUYaE ta P, 2006, vol. 4(20), pp. 204-216 (in Russian).
  4. Busygin B.S., Nikulin S.L., Garkusha I.N. Prognozirovanie zalezhey uglevodorodov v kristallicheskom fundamente DDV po kompleksu geofizicheskikh i kosmicheskikh materialov. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. Moscow, IKI, 2013, vol.10, no. 4, pp. 277-286 (in Russian).
  5. Busygin B.S., Miroshnichenko L.V. Raspoznavanie obrazov pri geologo-geofizicheskom prognozirovanii. Dnepropetrovsk, DGU press, 1991, 168 p. (in Russian).
  6. GRAVIPAK/GEOKOMPAS (rukovodstvo pol’zovatelya). Metodicheskie rekomendatsii po primeneniyu otraslevogo paketa programm obrabotki i interpretatsii gravimetricheskikh dannykh GRAVIPAK. Moscow, Neftegeofizika, 1989, 76 p. (inRussian).
  7. Demidenko A.L. GIS Karta 2000 kak sredstvo nakopleniya i analiza raznorodnykh dannykh, imeyushchikh prostranstvennoe raspredelenie. Informational Bulletin of GIS Assotiation, 2002, no. 4-5, pp. 7-9 (in Russian).
  8. Ignat’ev D.A., Leypunskiy M.B., Karnaukhov G.N. Geologicheskie GIS na baze programmnogo obespecheniya ESRI i Schlumberger. ArcReview, 2010, no. 2 (53), pp. 7 (in Russian).
  9. Zagubnyy D. G. Novaya programma obrabotki vektornykh i rastrovykh distantsionnykh materialov dlya GIS. Issledovanie Zemli iz kosmosa, 2004, no. 5, pp. 21-27 (in Russian).
  10. Zlatopol’skiy A.A. Metodika izmereniya orientatsionnykh kharakteristik dannykh distantsionnogo zondirovaniya (tekhnologiya LESSA). Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2008, no 8, vol.1, pp. 102-112 (in Russian).
  11. Kompleks spektral’no-korrelyatsionnogo analiza dannykh “KOSKAD 3D”. Available at: http://coscad3d.ru/documentation.html, 2008 (Accessed 13 November 2015) (in Russian).
  12. PANGEY – 10 let. Moscow, Geofizika, 2004, 106 p. (in Russian).
  13. Pіvnyak G.G., Busygіn B.S., Korotenko G.M. Anglo-rosіys’ko-ukraїns’kiy slovnik z GІS і DZZ. Dnepropetrovsk, Natіonal Mining Unіversity, 2014, 599 p. (in Ukrainian).
  14. Pivnyak G.G., Busygin B.S., Nikulin S.L. GIS-tekhnologiya integrirovannogo analiza raznorodnykh i raznourovnevykh geodannykh. Reports of NAS of Ukraine, 2007, no. 6, pp. 121-128. (in Russian).
  15. Troshkov G.A., Groznova A.A., Pogareva O.I. and oth. Programmnoe obespechenie rudnoy geofiziki dlya EVM tret’ego pokoleniya (komponenty ASOM RG); ed. V.N. Yakovleva. Leningrad, NPO “Rudgeofizika”, 1984, 131 p. (in Russian).
  16. Sovershenstvovanie, razvitie i vnedrenie avtomatizirovannoy sistemy obrabotki kompleksnykh aerogeofizicheskikh nablyudeniy (ASOM-AGS/ES); ed. L.A. Koval’. Alma-Ata, Kazakhstan politekhnical institite, 1984, 89 p. (in Russian).
  17. Shchepin M.V. ALINA. Avtomatizirovannyy analiz izobrazheniy aerokosmicheskikh fotoplanov. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. Moscow, IKI RAN, 2006, vol. 3, pp. 143-146 (in Russian).
  18. Busygin B.S., Nikulin S.L. Predicting methane accumulation in the Donetsk coal basin (Ukraine) on the basis of geological, geophysical and space data. Energy Efficiency Improvement of Geotechnical Systems. London, Taylor & Francis Group, 2013, pp. 151-160.
  19. Busygin B., Nikulin S.L. Specialized geoinformation system RAPID: features, structure, tasks. XIVth International Conference on Geoinformatics – Theoretical and Applied Aspects, May 12-14, 2015: abstracts. Kiev, VAG, 2015. DOI: 10.3997/2214-4609.201412353. Available at: http://www.earthdoc.org/publication/publicationdetails/?publication=80189 (Accessed 20 October 2015).
  20. Busygin B., Nikulin S. The integrated analysis of geological-geophysical and remote sensing data at the gold prospecting in Western  Uzbekistan. 67-rd EAGE conference: Extended Abstracts, vol. 1, Madrid, Spain, June 2005.
  21. Busygin B., Nikulin S. The investigation of lineaments location regularity in mountain regions using the satellite images. Proceedings of IAMG MatGeoS-2008 Conference, Freiberg, Germany, June 2008.
  22. Busygin B., Nikulin S. The methodology of oil and gas deposits prognosis by space and geophysical data. 71-rd EAGE conference: Extended Abstracts. Amsterdam, The Netherlands, June 2009.
  23. Busygin B., Nikulin S. The new techniques of satellite images analysis for the earthquakes prediction in North Turkey. Symposium on Geophysics and Remote Sensіng in Determіnatіon of Near-Surface, April 30, May 2, 2008, Izmir, Turkey.
  24. Definiens Enterprise Image Intelligence Suite. Available at: http:// www.geosystems.pl/upload/zalaczniki/01_Definiens-Enterprise-Image-Intelligence-Suite.pdf (Accessed 13 November 2015).
  25. Display and Inspection of Image Data with MultiSpec. Available at: https://engineering.purdue.edu/ ~biehl/MultiSpec/ tutorials.html (Accessed 13 November 2015).
  26. ERDAS Field Guide. Fifth Edition, Revised and Expanded. Available at: http://www.gis.usu.edu/manuals/labbook/erdas/manuals/FieldGuide.pdf (Accessed 13 November 2015).
  27. GeoGraph for Windows. Users Manual. Moscow, IG RAS, 1997, 153 p.
  28. Introduction to ENVI. Available at: http://cstars.ucdavis.edu /classes/mexusenvi/tut1.htm (Accessed 13 November 2015).
  29. Phillips J.D. Geosoft Executables Developed by the U. S. Geological Survey. BiblioBazaar, USA, 2013, 112 р.
  30. Pivnyak G., Busygin B., Nikulin S. Geoinformation System RAPID as the Means of Solving the Problems of Environment and Nature Management. 12th International Symposium on Environmental Issues and Waste Management in Energy and Mineral Production SWEMP. Prague, 2010, рр. 423-430.
  31. ProSource E&P Data Management & Delivery System. Available at: http://www.software.slb.com/products/foundation/ Pages/prosource.aspx (Accessed 13 November 2015).
  32. Vance D., Eisenberg R., Walsh D. Inside AutoCAD Map 2000. Canada, OnWordPress, 2000, 694 p.