Телефон: 522-81-45

Geoinformatika 2017; 1(61) : 42-50 (in Ukrainian)

DECOMPOSITION OF GEOGENIC RADON POTENTIAL BY LOGNORMAL KRIGING

S. Vyzhva, O. Shabatura, V. Onyshchuk, D. Onyshchuk, I. Onyshchuk

Institute of Geology, Taras Shevchenko National University of Kyiv, 90, Vasylkivska Str., Kyiv, 03022, Ukraine, e-mail: vsa@univ.kiev.ua, sand@univ.kiev.ua, vitus16@ukr.net, boenerges@ukr.net, oivan1@ukr.net

Purpose. Based on the analysis of structural and functional factors of distribution of radon levels in soil air and groundwater, we have developed a geo-statistical model of a geogenic radon potential (GRP). The obtained results are in agreement with those of geologic-geophysical studies and geo-statistic techniques aimed at identifying the spatial structure of GRP and its probable risks in the areas with a moderate ecological risk.
Design/methodology/approach. Firstly, we carried out a logarithmic transformation of radon measurements by grind­ing and determined the distribution of radon concentration by modeling a variogramm. Then we determined the distribution of the data by kriging simulation and performed geological interpretation of the decomposed components of GRP. This geo-statistical approach would be useful in making the required regulatory decisions on radon explora­tion programs, including radon monitoring of equivalent equilibrium of radon and thoron activity in indoor air of dwellings and soil.
Findings. Based on the analysis of factor-spatial components of GRP, we have discovered a linear and a few nested models. There are two large clusters of nested model having different spatial sizes. The first component of a nested model (the size of a cluster larger than 150 km) is probably related to a climatic factor; the second component (larger than 5 km) is likely to be linked with a certain type of soil. Small-sized spatial clusters of a nested model are described by the characteristics of the geomorphologic-landscape structure of the territory. We have also discovered some universality of the main model structure, which is determined by the averaged radium content in the bedrock and soil particles.
Practical value/implications. The main advantage of the geo-statistical evaluation with GRP is that it permits to make regional predications of a correct correlation level of the measured values of soil air radon and respective long-duration radon levels in indoor air of dwellings. The suggested method would make it possible to correct routine measurements of radon levels in indoor air of dwellings, to install a system of further observations in the regions with high-dose loadings, as well to plan radiological investigation and protective measures.

Keywords: radon, geogenic radon potential, lognormal kriging, griding, radon risk.

The full text of papers

  • References:

    1. Beckman I. Radon: the enemy, physician and assistant. Moscow: Moscow State University, 2000, 205 p. [In Russian].
    2. Zhukovskyy M., Yarmoshenko I. Radon: measurements, doses, risk evaluation. Yekaterinburg: RAS Uralian branch, 1997, 232 p. [іn Russian].
    3. Novikov G., Kapkov Y. Radioactive survey methods. Moscow: Depths, 1965, 750 p. [іn Russian].
    4. The main problems of radon security. Кiev. Ukrainian scientific and technological center, IGE NAS Ukraine, Kiev, 2005, 352 p. [іn Russian].
    5. Lloyd E., Lederman U. Handbook on Applied Statistics (translated ed.). Moscow: Finance and statistics, 1990, 526 p. [іn Russian].
    6. Tolstoy M., Shabatura O., Bychok V. Prospects for the organization of the National Radon Center in Irpin-Bucha-Vorzel recreational area. Ecology environment and life-safety activities, 2002, no. 2, pp. 102-103 [іn Ukrainian].
    7. Tyutyunnik Y., Shabatura O. Radon capacity of underground water of public and economic supply of Irpin-Bucha-Vorzel and Gostomel (Kiev area). Hydrology, hydrochemistry and hydroecology, 2003, iss. 5, pp. 286-290 [іn Ukrainian].
    8. Tyutyunnik Y., Shabatura O. Radon-222 in natural waters of south of Kyiv Polissya. Geographical Yearbook, 2002, iss. 2, pp. 128-133 [іn Ukrainian].
    9. Armstrong M. Basic Linear Geostatistics. Berlin, Springer, 1998, 155 p.
    10. Kemski J., Klingel R., Siehl A. Classification and mapping of radon affected areas in Germany. Environm. Int., 1996, vol. 22, supl. 1, pp. 789-798.
    11. Kemski, J., Klingel, R., Siehl, A. Geogene Faktoren der Strahlenexposition unter besonderer Berucksichtigung des Radon-Potentials (Abschlu.bericht zum Forschungsvorhaben St. Sch. 4062). In: Abschlu.bericht zum Forschungsvorhaben St. Sch. 4062. Schriftenreihe Reaktorsicherheit und Strahlenschutz, BMU-1996-470, 1996, 76 p.
    12. Kemski J., Klingel R., Siehl A. Das geogene Radon-Potential. In: Siehl A, editor: Umweltradioaktivitat. Ernst & Sohn. Berlin, 1996, pp. 179-222.
    13. Kemski J., Siehl A., Stegemann R., Valdivia-Manchego M. Mapping the geogenic radon potential in Germany using GIS-techniques. In: Barnet I., Neznal M. (editors). Radon investigations in Czech Republic VII and the fourth International Workshop on the Geological aspects of radon risk mapping. Prague. Czech Rep., 1998, pp. 45-52.
    14. Kies A., Feider M., Biell A., Rowlinson L. Radon mapping in the Grand-Duchy of Luxembourg. In: Barnet I., Neznal M. (editors). Radon investigations in the Czech Republic V and the 2nd International Workshop on the Geological aspects of radon risk mapping. Prague. Czech Rep., 1994, pp. 91-100.
    15. Klingel R., Siehl A. Das Radon-Risiko aus geologischer Sicht. In: Winter M., Wicke A. (editors). Umweltradioaktivitat − Radiookologie – Strahlenwirkungen. Fortschritte im Strahlenschutz, 1993. FS-93-67-T, pp. 99-105.
    16. Kreienbrock L., Siehl A. Multiple statistische Analyse von Radon-Erhebungsmessungen in Deutschland. In: Siehl A. (editor). Umweltradioaktivitat. Ernst & Sohn. Berlin, 1996, pp. 299-310.
    17. Lehmann R., Kemski J., Valdivia-Manchego M., Siehl A. Messungen der Radonkonzentration in Gebauden Oberfrankens, 1998, BfS-Bericht, ST 1-02/1998, 7 p.
    18. Neznal M., Neznal M., Barnet I. Testing of regional radon risk maps reliability. In: Barnet I. (editor). Radon investigations in the Czech Republic IV, 1993, pp. 12-17.
    19. Neznal M., Neznal M., Smarda J. Detailed radon risk mapping in the Neratovice and Melnik area (central Bohemia). In: Barnet I. (editor). Radon investigations in the Czech Republic, 1993, pp. 42-47.
    20. Ronca-Battista M., Magno P. A Comparison of the variability of different techniques and sampling periods for measuring Rn-222 and its decay products. Health Physics, 1988, vol. 55, no. 5, pp. 801-807.
    21. Synnott H., Fenton D. An evaluation of radon mapping techniques in Europe. Radiological protection institute of Ireland, 2005, 34 p.
    22. Zhua H.C., Charleta J.M., Poffijob A. Radon risk mapping in southern Belgium: an application of geostatistical and GIS techniques. Science of the Total Environment, 2001, vol. 272, iss. 1-3, pp. 203-210.