Телефон: 522-81-45

Geoinformatika 2017; 3(63) : 37-42  (in Ukrainian)

STUDIES OF VISCOSITY OF LIQUID DURING THE PROCESS OF ITS MOVEMENT IN A FLAT FRACTURE UNDER ACTION OF WAVE LOADING

V.P. Nagorniy, I.I. Denisyuk, Ya.O. Yushytsyna

Subbotin Institute of Geophysics, NAS of Ukraine, 63g, B. Khmelnilzky Str., Kiev, 01054, Ukraine, e-mail: vgv_nagornyi@ukr.net

Purpose. It is well known that viscosity of oils significantly affects their filtration into oil-gas-bearing strata. In order to reduce viscosity and to increase velocity of forwarding fluids along the fractures, the well- known methods of wave action upon strata are widely used. However, while choosing the frequency range of strata wave processing, the fracture distribution by width is not taken into account, which decreases the effectiveness of the wave effect. In order to reveal new possibilities for choosing the most effective regime of impulse loading of the rock bed, the authors consider the problem of determining velocity and variation of kinematic viscosity during the movement of the liquid in the flat smooth fracture of the rock bed while being wave-loaded by harmonic signal.
Design/methodology/approach. In solving this problem we used a differential equation which describes the movement of viscous liquid between two parallel planes modulating an endless fracture of arbitrary width.
Findings. Here we suggest formulae to determine the average velocity of movement through the fractures and the change in kinematic viscosity of the liquid versus the frequency of harmonic action on the rock bed in the case of different values of the fracture width. It has been found that during the process of action of harmonic signal on the flat smooth fracture filled with viscous liquid, the average stationary velocity of the movement of the liquid reaches its maximal values and kinematic viscosity reaches its minimal values in the case of definite frequency of harmonic action.
Practical value/implications. The results obtained could be useful in elaborating new wave methods of oil-gas-bearing strata processing aimed at increasing effectiveness of hydrocarbons extraction via decreasing fluid viscosity and in­creasing the velocity of its forwarding to the bottom hole of the producing wells.

Keywords: cavity, fluid, frequency, layer, liquid, velocity, viscosity, wave.

 The full text of papers will be available after 01/04/2019

References:

  1. Afanasenkov I.I., Zhujkov E.F. Opyt i perspektivy promyshlennogo ispol’zovanija akusticheskogo vozdejstvija v razlichnyh skvazhinah. Neftjanoe hozjajstvo, 1999, no. 12, pp. 16-19 [in Russian].
  2. Basniev K.S., Dmitriev N.M., Kanevskaja R.D., Maksimov V.M. Podzemnaja gidromehanika. Moscow: Institut komp’juternyh issledovanij, 2006, 488 p. [in Russian].
  3. Vojtenko V.S., Iovec V.N., Kireev A.M., Semenov Ju.V. Wave processing of oil and gas reservoirs. Minsk: Unipack, 2005, 253 р. [in Russian].
  4. Gorbachev Yu.I. Fiziko-khimicheskie osnovy ul’trazvukovoy ochistki prizaboynoy zony neftyanykh skvazhin. Geoin­formatika, 1998, no. 3, pp. 62-65 [in Russian].
  5. Nagornyj V.P., Mykuljak S.V., Vengrovych D.B., Skurativs’kyj S.I., Bjelins’kyj I.V., Denysjuk I.I., Kulich V.V., Sheremet G.P. Dynamichni procesy v geofizychnyh seredovyshhah: teorija, eksperyment, tehnologii’. Kyiv: Interservis, 2016, 244 р. [in Ukrainian].
  6. Nagornyj V.P., Denysjuk I.I. Impul’sni metody intensyfikacii’ vydobutku vuglevodniv. Kyi’v: Esse, 2012. 323 р. [in Ukrai­nian].
  7. Nagornyj V.P., Denysjuk I.I. Tehnologii’ intensyfikacii’ vydobutku vuglevodniv. Kyi’v: Esse, 2013. 268 р. [in Ukrai­nian].
  8. Nagornyj V.P., Denysjuk I.I., Lihvan V.M. Prospect of application of amplitude-modulated waves for increasing debit of producing wells. Naftogazova galuz’ Ukrai’ny, 2014, no. 5, pp. 22-26 [in Ukrainian].
  9. Nagornyj V.P., Denisjuk I.I., Lihvan V.M., Shvejkina T.A. Studies of interaction of pressure wave with the gas bubble at the late phase of development of oil deposit. Oil Industry, 2013, no. 5, pp. 80-82 [in Russian].
  10. Nagornyj V.P., Denysjuk I.I., Yushytsyna Ya.O. Pidvyshhennja naftoghazoviddachi plastiv shljakhom akustychnoji diji. Geoinformatika, 2012. no. 4, pp. 19-21 [in Ukrainian].
  11. Nagornyj V.P., Denysjuk I.I., Yushytsyna Ya.O. Spectral characteristics of waves excited by phase-modulated acoustic signal within nonlinear geophysical medium. Geoinformatika, 2014, no. 2, pp. 65-69 [in Ukrainian].
  12. Ellingsen O. EOR by electro-acoustic reservoir stimulation: A new approach. World oil, 2002, vol. 223, no. 11, pp. 29-33.
  13. Lawton W. Global analysis of wavelet methods for Euler’s equation. Mathematical modeling, 2002, vol. 5, pp. 75-88.
  14. Sastova N. Drstakova E., Kucera P.A. A wavelet multilevel solution of the stationary geoelectrical field in the non-homogeneous environment. Mathematical modeling, 2002, vol. 14, no. 5, pp. 98-108.