Телефон: 522-81-45

Geoinformatika 2014; 3(51) : 21-32  (in Russian)

NEW RESULTS OF RECONNAISSANCE INVESTIGATION IN THE BARENTS SEA FOR HYDROCARBON ACCUMULATIONS PROSPECTING BY METHOD OF FREQUENCY-RESONANCE PROCESSING OF REMOTE SENSING DATA

S.P. Levashov1,2, N.A. Yakymchuk1,2, I.N. Korchagin3, D.N. Bozhezha2

1Institute of Applied Problems of Ecology, Geophysics and Geochemistry, Laboratorny lane, 1, Kyiv 01133, Ukraine
2Management and Marketing Center of Institute of Geological Science NAS Ukraine, Laboratorny lane, 1, Kyiv 01133, Ukraine
3Institute of Geophysics of Ukraine National Academy of Science, Palladin av., 32, Kiev 03680, Ukraine, e-mail: korchagin@karbon.com.ua

Discussed in the paper are the results of the hydrocarbon (HC) potential assessment of some structures and fields in the Barents Sea by the frequency-resonance method of the remote sensing (RS) data processing and interpretation. Seven anomalies of the “oil and gas deposits” type have been discovered and mapped in the Norwegian shelf on the area of Skrugard and Havis fields’ location. The mapped large anomalous zone of the “gas reservoir” and “gas-condensate reservoir” type on the unique Shtokman field allows us to conclude that giant and unique HC deposits in the Arctic region can be detected and mapped by the mobile method. The absence of an anomalous zone over Central structure on the Fedynsky high and the relatively small anomalous zone over Pakhtusovskaya structure indicate that the probability of finding giant fields within these structures is very low. Consequently, the detailed geological-geophysical studies and drilling within these structures at this stage of prospecting are impractical due to the fact that at such a distance from the coast it is now economically feasible to develop only the giant and unique HC deposits. Seven anomalous zones of the “gas+condensate” type have also been mapped within the area of the large Varnekskoye uplift. In the Norwegian part of the former “gray” zone of the Barents Sea the remote sensing data were processed within four search sites covering 39 742 km2. The area of 3D seismic work within them is 13 956 km2. Two anomalous zones of the “gas deposit” type and 13 anomalous zones of the “gas+condensate reservoir” type with the total area of 1613 km2 have been detected and mapped within the investigated areas. The results obtained prove feasible the integrated application of remote sensing, seismic and geoelectric methods for hydrocarbon accumulations prospecting and exploration within offshore. The mobile technology of frequency-resonance processing of RS data provides a unique opportunity to operatively investigate by reconnaissance  the most promising areas within the Arctic region for detection of giant and unique HC fields. This may significantly speed up the development of the oil and gas potential of the Arctic region.

Keywords:  remote sensing data processing, interpretation, Barents Sea, anomaly of “deposit” type, gas, oil, condensate,  reservoir pressure, searching area, hydrocarbon field.

pdf

References:

  1. Levashov S.P., Yakymchuk N.A., Korchagin I.N. Novye vozmozhnosti operativnoj ocenki perspektiv neftegazonosnosti razvedochnyh ploshhadej, trudnodostupnyh i udalennyh territorij, licenzionnyh blokov [New opportunities for rapid assessment of the hydrocarbon potential of exploration areas, difficult of access and remote areas, and license blocks]. Geoinformatika [Geoinformatics (Ukraine)], 2010, no. 3, pp. 22-43.
  2. Levashov S.P., Yakymchuk N.A., Korchagin I.N. Ocenka otnositel’nyh znachenij plastovogo davlenija fljuidov v kollektorah: rezul’taty provedennyh jeksperimentov i perspektivy prakticheskogo primenenija [Evaluation of the relative values of fluid pressure in the reservoir: results of experiments and practical perspective]. Geoinformatika [ Geoinformatics (Ukraine)], 2011, no. 2, pp.19-35.
  3. Levashov S.P., Yakymchuk N.A., Korchagin I.N., Samsonov A.I., Bozhezha D.N. Metodicheskie aspekty primenenija tehnologii obrabotki i interpretacii dannyh distancionnogo zondirovanija Zemli pri provedenii poiskovyh rabot na neft’ i gaz v akvatorijah [Methodological aspects of application the technology of remote sensing data processing and interpretation during the oil and gas prospecting within offshore]. Geoinformatika [Geoinformatics (Ukraine)], 2012, no. 1, pp. 5-16.
  4. Levashov S.P., Yakymchuk N.A., Korchagin I.N. Prakticheskie rezul’taty primenenija operativnyh distancionnyh i mobil’nyh geojelektricheskih metodov dlja neftegazopoiskovyh rabot [Practical results of operativel remote and mobile geoelectric methods application for oil and gas exploration]. Geologija i poleznye iskopaemye Mirovogo okeana [Geology and Mineral Resources of the World Ocean], 2012, no. 1, pp. 66-87.
  5. Levashov S.P., Yakymchuk N.A., Korchagin I.N. Chastotno-rezonansnyj princip, mobil’naja geojelektricheskaja tehnologija: novaja paradigma geofizicheskih issledovanij [Frequency-resonance principle, mobile geoelectric technology: a new paradigm of Geophysical Research]. Geofizicheskij zhurnal [Geophysical Journal], 2012, vol. 34, no. 4, pp. 167-176.
  6. Levashov S.P., Yakymchuk N.A., Korchagin I.N. Ocenka perspektiv neftegazonosnosti otdel’nyh struktur Barenceva morja chastotno-rezonansnym metodom obrabotki dannyh distancionnogo zondirovanija Zemli [Assessment of petroleum potential of some structures of the Barents Sea by frequency-resonance method of remote sensing data processing]. Geoinformatika [Geoinformatics (Ukraine)], 2012, no. 1, pp. 5-16.
  7. Levashov S.P., Yakymchuk N.A., Korchagin I.N., Pischany Y.M., Bakhmutov V.G., Soloviev V.D., Bozhezha D.N. Juzhno-Folklendskij bassejn: novye dannye o glubinnyh geofizicheskih neodnorodnostjah i neftegazonosnosti (po rezul’tatam geojelektricheskih i distancionnyh issledovanij) [South Falkland basin: new data on deep geophysical irregularities and oil and gas prospects (based on the results of geoelectric and remote sensing investigation)]. Geoinformatika [Geoinformatics (Ukraine]), 2013, no. 4, pp. 5-15.
  8. Levashov S.P., Yakymchuk N.A., Korchagin I.N. O celesoobraznosti kompleksirovanija distancionnyh, sejsmicheskih i geojelektricheskih metodov pri poiskah i razvedke skoplenij uglevodorodov v akvatorijah [On the feasibility of remote sensing, seismic and geoelectric methods integration for hydrocarbon deposits prospecting and exploration within offshore]. Nefteservis-Oil-service. 2014, no. 1, pp. 20-23.
  9. Pavlov S.P. Geologicheskoe stroenie i neftegazonosnost’ severo-vostochnoj chasti Barenceva morja po geofizicheskim dannym. Avtoref. Dis. … kand. geol.-mineral. Nauk [Geological structure and oil and gas north-eastern part of the Barents Sea by geophysical data. D-r Philosophy (geol.-mineral sci.) published dissertation summary]. Murmansk, 2012, 26 p.
  10. Rusakov O.M., Kutas R.I. Fata-morgana biogennoj doktriny uglevodorodov v Chernom more [Fata Morgana of biogenic hydrocarbons doctrine in the Black Sea]. Geofizicheskij zhurnal [Geophysical Journal], 2014, v. 36, no. 2, pp. 3-17.
  11. Shipilov E.V, Murzin P.P. Mestorozhdenija uglevodorodnogo syr’ja zapadnoj chasti rossijskogo shel’fa Arktiki: geologija i zakonomernosti razmeshhenija [Hydrocarbon deposits of western part of the Russian Arctic shelf: geology and distribution]. Geologija nefti i gaza [Oil and Gas Geology], 2001, no. 4, pp. 6-19.
  12. Contracts Awarded for Barents Sea Group Seismic Shoot. Available at: http://oilpro.com/post/3247/contracts-awarded-for-barents-sea-group-seismic-shoot.
  13. Gabrielsen P.T., Abrahamson P., Panzner M., Fanavoll S., Ellingsrud S. Exploring frontier areas using 2D seismic and 3D CSEM data, as exemplified by multi-client data over the Skrugard and Havis discoveries in the Barents Sea. First Break, 2013, v. 31, no. 1, p. 63-71.
  14. Feather K. The rapid adoption of seabed logging. Scandinavian Oil and Gas Magazine, 2007, no. 5/6, p. 37-38.
  15. Hodgson N., Intawong A. Derisking deep-water Namibia. First Break, 2013, v. 31, no. 12, p. 91-96.
  16. Levashov S.P., Yakymchuk M.A., Korchagin I.N., Bakhmutov V.G.,  Soloviev V.D.,  Bozhezha D.N. The Falkland Basins – New Structural Model and Hydrocarbon Bearing Prospects (by Remote Sensing and Geoelectric Data). 76nd EAGE Conf. and Technical Exhibition incorporating SPE EUROPEC, 2014. Amsterdam, 16-19 June 2014. 5 p. doi: 10.3997/2214-4609.20140908. Available at: http://www.earthdoc.org/publication/publicationdetails/?publication=75780.
  17. Levashov S.P., Yakymchuk N.A., Korchagin I.N., Bozhezha D.N. Frequency-resonance method of remote sensing data processing: approbation on hydrocarbon field of Barents Sea offshore. 76nd EAGE Conf. and Technical Exhibition incorporating SPE EUROPEC 2014. Amsterdam, 16-19 June 2014. 5 p. doi: 10.3997/2214-4609.20141265. Available at: http://www.earthdoc.org/publication/publicationdetails/?publication=76136.
  18. Norway looks forward to continuing offshore fortunes. First Break, 2013, v.31, no. 2, p. 26.
  19. Poor exploration results could blight UK’s offshore progress, Wood Mackenzie report suggests. First Break, 2013, v. 31, no. 2, p. 28.
  20. Yakymchuk N.A., Levashov S.P., Korchagin I.N. Experience of Mobile Geophysical Methods Using for Hydrocarbon Potential Assessment of Some Structures in Barents Sea. 75nd EAGE Conference and Technical Exhibition incorporating SPE EUROPEC 2013. London, 10-13 June 2013. CD-ROM Abstracts volume. 5 p. doi: 10.3997/2214-4609.20130580. Available at: http://www.earthdoc.org/publication/publicationdetails/?publication=68437.