Телефон: 522-81-45

Geoinformatika 2014; 3(51) : 40-46  (in Russian)

BALTICA IN THE SCHEME OF MIDDLE PALEOTECTONIC RECONSTRUCTIONS

E.B. Polyachenko, V.G. Bakhmutov

Institute of Geophysics of Ukraine National Academy of Science, Palladin av., 32, Kiev 03680, Ukraine,
e-mail: lithos@bk.ru

Relative kinematics models of the Baltic and Laurentia in the middle Paleozoic on the basis of paleomagnetic data are examined. The constructions were made using both global paleomagnetic databases and the author’s original data. According to the analysis of the Apparent Polar Wander Path for different blocks and new paleomagnetic data for the Silurian-Devonian fragment of the East European Platform (south-western Ukraine, Podolia) two kinematic models were constructed. Dynamic characteristics of each model were analyzed and compared. More preferable appeared the model when Laurentia was near the equator from the mid Llandovery, drifted to the equatorial latitudes of the South Hemisphere in the Lower Devonian and occupied  the temperate latitudes of the South Hemisphere at  the end of the Lower Devonian.  Baltica since the mid Llandoverian drifted from tropical latitudes of the southern hemisphere near the equator and migrated to equatorial latitudes of the Southern Hemisphere at the end of the Lower Devonian. The collision of Laurentia with Baltica occurred at the end of Wenlock, forming the Laurussia. The latitudinal drift of Baltica in the south and north directions did not exceed 10 cm/yr with counterclockwise rotation by 1–2 °/Ma from the Cambrian to the Early Devonian. During the period of 430–400 Ma the East European Platform was moving in equatorial latitudes of the Southern Hemisphere with a counterclockwise rotation of 16°. After the Caledonian orogeny, there was a significant decrease in the rate of rotation.

Keywords: Middle Paleozoic, paleomagnetism, Baltiсa, Laurentia, the trajectory of the apparent polar wander paths.

pdf

References:

  1. Bakhmutov V., Elens’ka M., Konstantinenko L. Novye rezul’taty paleomagnitnykh issledovaniy siluriyskikh otlozheniy basseyna r. Dnestr, Ukraina [New results of paleomagnetic studies of the Silurian sediments of the Dniester River basin, Ukraine]. Geofizicheskiy zhurnal [Geophysics journal (Ukraine)], 2001, T. 23, no. 2, pp. 3-18.
  2. Bakhmutov V., Teyser-Elenskaya M., Kadzyalko-Khofmokl’ M., Konstantinenko L., Polyachenko E. Paleomagnitnye issledovaniya nizhnedevonskikh serotsvetnykh otlozheniy Podolii [Paleomagnetic study of Lower Devonian deposits of Podolia]. Geofizicheskiy zhurnal [Geophysics journal (Ukraine)], 2012, T. 34, no. 6, pp. 3-18.
  3. Lubnina N.V., Iosifidi A.G., Khramov A.N., Popov V.V., Levandovskiy M. Paleomagnitnye issledovaniya siluriyskikh i devonskikh otlozheniy Podolii [Paleomagnetic study of the Silurian and Devonian deposits of Podolia]. Paleomagnetizm osadochnykh basseynov Severnoy Evrazii. Sbornik trudov. SPb: VNIGRI [Paleomagnetism of sedimentary basins of Northern Eurasia], 2007, pp.105-125.
  4. Pecherskiy D.M., Didenko A.N. Paleoaziatskiy okean [Paleoasian Ocean]. Moscow IFZ RAN, 1995, 298 p.
  5. Polyachenko E.B. Paleotektonicheskie rekonstruktsii polozheniya Vostochno-Evropeyskoy platformy v srednem paleozoe po paleomagnitnym dannym [Paleotectonic reconstruction provisions of the East European platform in the Late Paleozoic (paleomagnetic data)]. Geodinamika [Geodynamics], 2012, no. 2 (13), pp. 119-128.
  6. Creer K. M., Irving E., Runcorn S. K. The direction of the geomagnetic field in remote epochs in Great Britain. J. Geomagn. Geoelectr, 1954, vol. 6, pp. 163-168.
  7. Evans D.A.D., Pisarevsky S.A. Plate tectonics on early Earth? Weighing the paleomagnetic evidence. Geol. Soc. Amer., Spec. Pap., 2008, vol. 440, pp. 249-263.
  8. Hospers J. Rock magnetism and polar wandering, Nature, 1954, vol. 173, pp. 1183-1184.
  9. Irving E. Paleomagnetism and its application to geological and geophysical problems. New York, Wiley, 1964.
  10. Jelenska M., Bakhmutov V., Konstantinenko L. Paleomagnetic and rock magnetic data from the Silurian succession of the Dniester basin, Ukraine. Phys. Earth Planet. Int., 2005, vol. 149, pp. 307-320.
  11. Kent D.V., M.A. Smethurst. Shallow bias of paleomagnetic inclinations in the Paleozoic and Precambrian. Earth Planet. Sci. Lett., 1998, vol.160, pp. 391-402.
  12. Opdyke N.D., K.W. Henry. A test of the Dipole Hypothesis, Earth Planet. Sci. Lett., 1969, vol. 6, pp. 139-151.
  13. Pisarevsky S.A., McElhinny M.E. Global Paleomagnetic visual database developed into its visual. Form. EOS, 2003, vol. 84, n. 20.
  14. Torsvik T., Van Der Voo R., Preeden U. et al. Phanerozoic polar wander, paleogeography and dynamics. Earth. Sci. Rev, 2012, vol.114, pp. 325-368.
  15. Torsvik T.H., R. Van der Voo. Refining Gondwana and Pangea palaeogeography; estimates of Phanerozoic non-dipole (octupole) fields. Geophys. J. Int., 2002, vol. 151, pp. 771-794.
  16. Van der Voo R., Torsvik T.H. Evidence for Permian and Mesozoic non-dipole fields provides an explanation for Pangea reconstruction problems. Earth Planet. Sci. Lett., 2001, vol. 187, pp. 71-81.
  17. Van der Voo R. The reliability of paleomagnetic data. Tectonophysics,1990, Т. 184, vol. 1, pp. 1-9.
  18. Wilson R.L. Permanent Aspects of the Earth’s Non-dipole Magnetic Field over Upper Tertiary Times. Geophys. J. R. Astr. Soc., 1970, vol. 19, pp. 417-37.