Телефон: 522-81-45

Geoinformatika 2018; 3(67) : 62-77

УДК 551.58.001.57;551.58.001.18+551.509.3

PROJECTIONS OF AIR TEMPERATURE AND RELATIVE HUMIDITY IN UKRAINE REGIONS TO THE MIDDLE OF THE 21ST CENTURY BASED ON REGIONAL CLIMATE MODEL ENSEMBLES

S.V. Krakovska 1, L.V. Palamarchuk 1,2, N.V. Gnatiuk 1,3, Т.M. Shpytal 1

1 Ukrainian Hydrometeorological Institute, 37, Prospekt Nauki, Kyiv, 03028, Ukraine, е-mail: svitlanakrakovska@gmail.com, shpital@bigmir.net
2 Taras Shevchenko National University of Kyiv, 64/13, Volodymyrska Street, Kyiv, 01601,Ukraine, е-mail: palamarchuk.l@ukr.net
3 Nansen International Environmental and Remote Sensing Centre, 14th Line 7, Office 49, Vasilievsky Island, St. Petersburg, 199034, Russian Federation, е-mail: natalia.gnatiuk@niersc.spb.ru

Purpose. The study aims at examining the main features of air temperature and relative humidity distribution in Ukraine to the middle of the 21st century and their changes relatively to the standard WMO climatic period 1961–1990 based on selected and verified regional climate model ensembles. The paper focuses on the analysis of the thermal and humidification regimes all for Ukraine as a whole, and for individual regions, administrative units and the Autonomous Republic of Crimea.
Methodology. In order to obtained long-term air temperature and relative humidity projections for the territory of Ukraine with high resolution, we used regional climate models (RCMs) from the EU FP-6 project ENSEMBLES (http://ensembles-eu.metoffice.com/) initiated with IPCC scenario SRES A1B. Multi-year monthly, cold and warm half-year and annual values of air temperature and relative humidity have been determined for the period 2021-2050 based on selected 10 RCMs ensemble for air temperature and 3 RCMs ensemble for relative humidity. Methodology of ensemble formation for air temperature projections is described previously in detail by authors. For relative humidity, according to the same methodology, three RCMs (REMO, RCA3, RACMO2) were selected that are part of the previous ensemble for air temperature and are the minimum number of models for the ensemble formation. The verification of the RCM’s outputs was performed for the standard WMO climatic period 1961–1990 using data observations from European database E-Obs (https://www.ecad.eu/) for temperature and data from Climate Cadastre of Ukraine (http://www.cgo.kiev.ua/index.php?dv=pos-klim-kadastr) for relative humidity.
Results. According to the obtained projections of air temperature to the middle of the 21st century, the monthly air temperature will increase in the range from 0.4 to 3.0oC and the annual air temperature will increase in the range from 1.6 to 2.1oC. Most intensive warming relative to the standard climatic period is expected in the northeast, east and south regions of Ukraine.
For the first time, relative humidity projections to the middle of the 21st century were obtained for the whole territory of Ukraine and for individual regions and administrative units of the country. The range of projected changes in relative humidity is within ± 1% for annual and ± 3% for monthly values. Generally, positive increments of the monthly values are expected in December (-0.3 ÷ 1.5%) and May (-0.5 ÷ 1.2%), and mostly negative – in March (-2.3 ÷ -0.2%), June (-2.7 ÷ 0.2%) and February (-1.5 ÷ 0.7%). Within the established range of relative humidity fluctuations, with the increase of the surface air temperature an increase in the moisture content in the surface layer should be expected, that could result in further increasing of heavy precipitation events particularly in warm half-year.
Practical value. The obtained air temperature and relative humidity projections may be used for further studies and assessments of the impacts of future climatic conditions on economy, ecosystems, health, etc.

Keywords: air temperature, relative humidity, regional climate model, ensemble of models.

 

The full text of papers

 

References

  1. Izmenenie klimata. Fizicheskaya nauchnaya osnova. Vklad Rabochey gruppy I v Pyatyy otsenochnyy doklad Mezhpravitel’stvennoy gruppy ekspertov po izmeneniyu klimata; red. [T.F. Stokker, D. Tsin’, Dzh.-K. Plattner, M. Tignor, S.K. Allen, Dzh. Boshung, A. Nauels, Yu. Sya, V. Beks i P.M. Midgley. Kembridzh, Soedinennoe Korolevstvo; N’yu-York, SShA: Kembridzh yuniversiti press, 2013. (Glossariy; red.. S. Planton. Moskva: MGЄIK, 2013). http://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_SummaryVolume_FINAL_RUSSIAN.pdf.
  2. Klimatychnyi Kadastr Ukrainy (elektronna versiia) Derzhavna hidrometeorolohichna sluzhba, UkrNDHMI, Tsentralna Heofizychna Observatoriia. Kyiv, 2006 http://www.cgo.kiev.ua/index.php?dv=pos-klim-kadastr (Accessed 13 July 2018) [in Ukrainian].
  3. Lipinskyi V.M., Diachuk V.A., Babichenko V.M. eds. Klimat Ukrainy. Kyiv: Vydavnytstvo Raievskoho, 2003, 344p. [in Ukrainian)].
  4. Krakovska S.V. Сurrent climate changes in the Luhansk region. Geoinformatika. 2012. N 3 (43). P. 57—68 [in Ukrainian].
  5. Krakovska S.V., Gnatiuk N.V., Shpytal Т.M., Palamarchuk L.V. Projections of surface air temperature changes based on data of regional climate models’ ensemble in the regions of Ukraine in the 21st century, Naukovi pratsi Ukrainskoho hidrometeorolohichnoho instytutu. 2016. N 268. P. 33—44 [in Ukrainian].
  6. Krakovska S.V., Palamarchuk L.V., Bilozerova А.K., Shpytal Т.M. Total cloud cover in Ukraine till the mid-21st century, based on the data of an ensemble of regional climate models. 2017, N 3(63), P. 56—66 [in Ukrainian].
  7. Krakovska S.V., Palamarchuk L.V., Gnatiuk N.V., Shpytal Т.M., Shedemenko I.P. Changes in precipitation distribution in Ukraine for the 21st century based on data of regional climate model ensemble. 2017, N 4(64), P. 62—74 [in Ukrainian].
  8. KulbidaI., Barabash M.B., Yelistratova L.O. Prohnoz zmin klimatu Ukrainy na pochatku XXI stolittia. Naukovi zapysky Vinnytskoho derzhavnoho pedahohichnoho universytetu imeni Mykhaila Kotsiubynskoho. Seriia: Heohrafiia. 2011, N 23, P. 10—17 [in Ukrainian].
  9.  Malytska L.V. Kilkisna otsinka komfortnosti pohodnykh umov ta klimatu. Hidrolohiia, hidrokhimiia i hidroekolohiia. 2016. Vol. 2, P. 97—106 [in Ukrainian].
  10. Palamarchuk L.V., Krakovska S.V. Rehionalni zminy klimatu Ukrainy. Metodychni vkazivky do navchalnoho kursu. Kyiv: DP «Print-Servis», 2018, 88 p. [in Ukrainian].
  11. Savenets Short-term variability of atmospheric humidity altitudinal distribution above Ukraine and adjacent territories. Hidrolohiiа, hidrokhimiiа i hidroekolohiiа: The scientific collection. 2017, N 2(45), P. 68—76 [in Ukrainian].
  12. ShpygM., Palamarchuk L.V., Huda K.V. Evaluation of the accuracy of recovery of temperature and humidity vertical profiles of the three-dimensional diagnostic model. Hidrolohiiа, hidrokhimiiа i hidroekolohiiа: The scientific collection. 2015, N 2(37), P. 118—126 [in Ukrainian].
  13. Balabukh V., Malytska L. Impact of climate change on natural fire danger in Ukraine. IDŐJÁRÁSQuarterly Journal of the Hungarian Meteorological Service. 2017, V121, N 4, P. 453—477. https://www.met.hu/en/ismeret-tar/kiadvanyok/idojaras/index.php?id=583 (Accessed 17 July 2018).
  14. Barfus, Bernhofer C. Assessment of GCM performances for the Arabian Peninsula, Brazil, and Ukraine and indications of regional climate change. Environmental earth sciences. 2014, Vol. 72, N 12, P. 4689—4703. DOI: 10.1007/s12665-014-3147-3 (Accessed 2 July 2018).
  15. Boé, Terray L. Land–sea contrast, soil-atmosphere and cloud-temperature interactions: interplays and roles in future summer European climate change. Climate dynamics. 2014, Vol. 42, N 3—4, P. 683—699. DOI: 10.1007/s00382-013-1868-8 (Accessed 8 July 2018).
  16. EfimovV., Volodin E.M., Anisamov A.E., Barabanov V.S. Regional Projections of Climate Change for the Black Sea–Caspian Sea Area in Late 21st Century. Physical Oceanography. 2015, N 5, P. 49—65. DOI: 10.22449/1573-160X-2015-5-49-66 (Accessed 1 July 2018).
  17. Fischer, Pluntke T., Pavlik D., Bernhofer C. Hydrologic effects of climate change in a sub-basin of the Western Bug River, Western Ukraine. Environmental earth sciences. 2014, Vol. 72, N 12, P. 4727—4744. DOI: 10.1007/s12665-014-3256-z (Accessed 3 July 2018).
  18. HaylockR., Hofstra N., Klein Tank A.M.G., Klok E.J., Jones P.D., New M. A European daily high-resolution gridded dataset of surface temperature and precipitation. Journal of Geophysical Research Atmospheres. 2008, Vol. 113(D20119). DOI: 10.1029/2008JD10201 (Accessed 10 July 2018).
  19. Krakovska S., Gnatiuk N., Shpytal T., Shedemenko I. Methodology of the best RCMs ensemble selection applied for Ukraine. Proceedings of the International Conference on Regional Climate CORDEX. Brussels, 2013, P. 87—91. https://www.researchgate.net/publication/294089331 (Accessed 10 July 2018).
  20. Nakićenović N., Swart R. (eds). Special Report on Emissions Scenarios. A Special Report of Working Group III of the Intergovernmental Panel on Climate Change., Cambridge, United Kingdom; New York, NY, USA. Cambridge University Press 2000. 599 p. https://www.ipcc.ch/pdf/special-reports/emissions_scenarios.pdf (Accessed 15 July 2018).
  21. Shvidenko A., Buksha I., Krakovska S., Lakyda P. Vulnerability of Ukrainian Forests to Climate Change. Sustainability. 2017, Vol. 9, Iss. 7, DOI: 10.3390/su9071152 (Accessed 5 July 2018).
  22. Spinoni J., Szalai S., Szentimrey T. etc. Climate of the Carpathian Region in the period 1961–2010: climatologies and trends of 10 variables. International Journal of Clim 2015, P. 1322—1341. https://doi.org/10.1002/joc.4059 (Accessed 5 July 2018).
  23. Van der Linden P., J.F.B. Mitchell (eds). ENSEMBLES: Climate Change and its Impacts: Summary of research and results from the ENSEMBLES project. Met Office Hadley Centre. 2009. FitzRoy Road, Exeter EX1 3PB, UK. 160  http://ensembles-eu.metoffice.com/docs/Ensembles_final_report_ Nov09.pdf (Accessed 6 July 2018).