Телефон: 522-81-45

Geoinformatika 2019; 1(69) : 58-61

УДК 528.88 (914/919):629.783

THE APPROACH TO USE OF REMOTE SENSING DATA FOR DEFINITION THE DIP AND STRIKE OF ROCK LAYERS

V.I. Zatserkovnyi , I.V. Tishaiev, O.M. Pylypenko

Taras Shevchenko National University of Kyiv, Institute of Geology, 90, Vasylkivska Str., Kyiv, 03022, Ukraine, e-mail: zvigis@mail.ru, ivantishaev@yandex.ru, ya.ne.haker@yandex.ua

Purpose. It is investigated the approach to the use the remote sensing data for finding the dip and strike of rock layers. A geometric model for approximation surfaces of rock layers and finding spatial orientation elements, can be designed and deployed based on the remote sensing data.
Design/methodology/approach. The methodology was implemented as workflow. Geological recognition (manual or automatized) of remote sensing data (optical range) consists of identification lithological types and tracing edge polylines between neighbors types. Automated extraction spatial information from Digital Elevation Model (DEM) for each vertex of edge polylines. Calculation spatial orientation elements of surfaces for each conjunction of  lithological types (dip and strike of rock layers). Surfaces approximation for strata surfaces. Creation 2D and 3D models of the geological situation.
Findings. This approach is rapid and suitable for fast analysis of large areas without field investigations. Unlike the traditional way of orientation geological features finding In Situ, this approach can avoid personal errors on account of the statistical significance of points quantity. The disadvantages are impossibility explore territories with vegetation and/or smooth relief. But this is a problem of all approaches which are based on  remote sensing data in geology.

Keywords: remote sensing data, geoinformation system (GIS), dip line, strike line, dip azimuth, trend azimuth.

 

The full text of papers

 

References

  1. Baghatospektraljni metody dystancijnogho zonduvannja Zemli v zadachakh pryrodokorystuvannja: monoghrafija [za red. V.I. Ljaljka, M.O.Popova]. – K.: Nauk. dumka, 2006. – 360 s.
  2. Zheleznjak O.O. Kosmichni ta gheoinformacijni systemy / O.O. Zheleznjak, V.I. Zacerkovnyj, V.S. Kysljuk, O.Je. Nikolajenko. – Nizhyn: Vyd-vo Nizhyn. derzh. un-tu im. M. Ghogholja, 2016. – 374 s.
  3. Zhukov M.N. Matematychna statystyka ta obrobka gheologhichnykh danykh: pidruchnyk / M.N. Zhukov. ¬– K.: Vydavn.-polighr. centr “Kyjivsjkyj universytet”, 2008. – 518 s.
  4. Zacerkovnyj V.I. Gheoinformacijni systemy v naukakh pro Zemlju / V.I. Zacerkovnyj, I.V. Tishajev, V.K. Demydov. – Nizhyn: Vyd-vo Nizhyn. derzh. un-tu im. M. Ghogholja, 2016. – 510 s.
  5. Petrusevich M.N. Aerometody pri geologicheskikh issledovaniyakh / M.N. Petrusevich. – M.: Gosgeoltekhizdat, 1962. – 408 s.
  6. Pravilo Kramera. Metod obratnoy matritsy. – [Elektronniy resurs]. ‒ Rezhim dostupa: http://www.mathprofi.ru/pravilo_kramera_matrichnyi_metod.html (data zvernennya 07.12.2016).
  7. Miller V.C. Photogeology / V.C. Miller. – McGraw-Hill Book Co., 1961. – 245 p.
  8. Schowengerdt R.A. Remote Sensing: Models and Methods for Image Processing. ‒ Third ed. / R.A. Schowengerdt. – ELSEVIER, 2007. – 515 p.
  9. Silas T. ArcPy and ArcGIS – Geospatial Analysis with Python / T. Silas. – PACKT Publishing, 2015. – 224 p.
  10. SRTM Tile Grabber. – [Elektronniy resurs]. ‒ Rezhim dostupu: http://dwtkns.com/srtm/ (data zvernennya 07.12.2016).